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Fig. 1. Migration stars in two different zoom views, followed by a focus on three outgoing migration star patterns in New York State, and 

their respective weighted radial variation signals.  

Abstract—Directional flows created from an origin/destination matrix have been traditionally difficult to visualize because of the 

number of flows to be rendered in a small cartographic space. Because visualizing geographic flow dynamics are useful  for 

understanding the complex dynamics of human and information flow that connect non-adjacent space, techniques that allow for 

visual data mining or static representations of system dynamics are a growing field of research. Here, we use a Weighted Radial 

Variation (WRV) technique to classify places based on their group’s radially-emanating vector flows. Each entity’s vector are 

syncopated in terms of cardinality, direction, length, and flow magnitude. The WRV process unravels each star-like entity’s 

individual flow vectors on a 0-360° spectrum, to form a unique signal whose distribution depends on the flow presence at each step 

around the entity, and is further characterized by flow distance and magnitude. The signals are processed with a supervised 

classification method that clusters entities with similar signatures or trajectories in order to learn about types and geographic 

distribution of flow dynamics. We use U.S. county-to-county human incoming and outgoing migration data to test our method.  

Index Terms— Movement, Flow mapping, Geovisualization, Feature reduction, Graph structures 

    1  INTRODUCTION 

We present a novel way to classify geographic entities (origins and 
destinations) in a flow system while preserving the individual 
characteristics (flow magnitude, weight and direction). Using these 
classifications, we can better visualize, and thus better understand 
the nature and dynamics of large complex geographic flow 
systems. This research is driven by the increasing availability of 
large datasets: Data from cell phone traces, traffic sensors, flight 
schedules and telephone records, and government digital 

collections are now becoming more common sources for analysis 
and problem solving for fields such as transportation, logistics and 
operations, geography and civil engineering.  
    Computational methods for matrix datasets have already helped 
researchers in these fields learn more about human and 
communication transactions across the built environment. The 
dynamics of large, multi-scale flow systems are often measured 
with summary factors—like a node‘s degree (number of 

neighbors), or a hub‘s centrality in a whole flow system [1-3]. 
    While these methods continue to inform spatial system dynamics 
and benefit from cutting-edge complex network analysis (CNA) 

techniques, their progress has been largely unaccompanied by 
spatial visualization techniques. The need for good characteristic-
reducing techniques for multi-featured spatial systems, like 
complex flows, are an important component of the static and 
dynamic, user-interactive, geovisualization tools that currently 
support visual spatial data mining. [4][5] A recent focus towards 
visualizing flows [6][7] and object movement [8][9] and space-
time dynamics [10] has demonstrated the benefits of these kinds of 

methods.  
    Though rendering spatial systems is a growing topic of interest, 
the nature of complex geographic networks‘ geographic flow 
intersections and overlaps, present a natural visualization problem, 
as point-to-point datasets can have many links, yielding a 
‗haystack‘ of links—from which little analysis can be performed. 
(Figure 2) Early efforts to spatialize flow dynamics include 
Tobler‘s computer mapping, where flows were rendered as 

aggregate arrows in order to fit in a cartographic space, and also 
woven into vector surfaces that resembled magnetic fields. [11-13] 
More recently, Andrienko and Andrienko echo the benefits of 
aggregating flows, adding that multi-scale analysis is now possible. 
[8] Similarly, Woods et al take a unique approach to flow 
aggregation by assigning characteristics of OD vectors to cells, 
instead of the more traditional line summaries. [14] One method 
that fixes the haystack problem and the aggregation problem 

(sidesteps summarizing or averaging values, distances or flow 
direction.) is an interactive system where nodes selection, so that 
certain links are shown instead of all links. This provides a clearer 
picture of small-scale behavior, but at the expense of losing the ‗all 
data in one view‘ advantage, so pre-selected views must be stored 
and retrieved by memory.  
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Fig. 2. Example of layered flow lines, where darker lines indicate 

more migrants moving from an origin county to a destination county.  

2  METHODOLOGY 

We use data on U.S. county-to-county migration, collected by the 
IRS, to simulate a node/edge flow system in geographic space.  We 
start with a matrix of 3140 x 3140 entries, where each column and 

row represents a U.S. county centroid. We do not count self-nodes, 
when movers choose a new home within the same county, but note 
that these values are typically high for each place. We add a 
distance matrix, listing the distance in kilometers between each 
county centroid and a matrix of angles between each node pair, 
where the vector head is at the origin and tail at the migrant‘s 
destination. (These can, of course, be reversed, if the destination is 
the node in question, but here, we concentrate on outgoing flows 

only.) 
    Our goal is to characterize individual places by their out 
migration features: for each county, we extract ‗stars,‘ where the 
node in focus is the center, and the flows leaving the node are 
attached to the central county centroid, and treated as part of the 
star. (Figure 3) 
    The star method has been used before for multidimensional data 
visualization, where each spoke from the center has a length 

equivalent to a specified quantitative feature of the entity. [15][16] 
Others have taken the tool a step further, stressing interactivity [17] 
and evaluating the effectiveness of different star symbologies [18]. 
The difference between this glyph-type entity visualization 
technique and our geographic case is that each vector in the radial 
system represents three (or more) characteristics instead of a single 
characteristic, as we have measures of (1) distance, (2) direction 
and (3) magnitude, for each. Also, our vectors are ―tacked‖ to 

geographic space, meaning that an arc‘s radial direction is a 
variable with syncopated occurrences around the 0 – 360° radius, 
instead of an evenly-spread series of a pre-determined number of 
spokes in non-spatial star glyphs.  
     Noting that geographic stars (like graph structures) have a 
nearly infinite number of possible configurations, our probability of 
having a certain graph occur could be calculated by the convolution 
of 4 continuous variables: ray cardinality, magnitude, distance, and 
angle. To manage and group these e use an ‗unraveling‘ technique 

to characterize the radial dynamics of each county‘s graph 
structure, to measure Weighted Radial Variation. For each county, 
we create a signature vector comprised of an edge weight (number  
 
 
 
 
 

 

 
Fig. 3. Migration Patterns for a certain distance-class of U.S.       

counties, representing 10% of the total origin counties. Each 
migration star shows a total distance of 600-100 kilometers of 
straight-line travel. 

 

Fig. 4. Each element of the three ‘star’ patterns above are separated 

and spread out by their degree on the x axis of the graph above. 

Each of the blue, yellow and green county stars are then treated as 

three different signals and classified, as part of the 3500 signal 

system, with an eigenvector decomposition algorithm.  

of migrants) and distance value for each angle circling around the 
node from 0 – 360°. This signature vector is laid out as a signal      
over the radial steps to show similarities and differences between  
counties. (Figure 4)   The weighted signals are then clustered using 
a supervised eigenvector decomposition algorithm, and a typology 
is created for each cluster, where the number of desired resultant 
cluster classes can be chosen. [19] This type of signal processing 

and pattern recognition analysis has been successful in a 
geographic context for classifying and understanding space. [20] 

3  RESULTS 

When these typologies of county graph types are visualized in 
geographic space, we are able to compare which counties are 
similar in their migration behavior, look at regional variation, and 
join demographic information. We also find that this method is 

robust with respect to including many edge weights per flow 
instead of a single measure of total migrants from county i to 
county j. For example, we can use our method to cluster stars 
where each flow has a measure of female migrants and male 
migrants, or migrants by age group. These typologies are then 
visualized via a single-variable cartographic representation that still 
represents the anisotropic ‗spread/reach‘ of people migrating from 



different kinds of locales. From this representation, we can answer 
questions that would be difficult to answer otherwise, for example: 
how far flows travel, to what geographic direction are the flows 
travelling, and the magnitude of movers from each locale.  

4  CONCLUSION 

Our aim for this new visualization technique was to preserve 
individual, disaggregate characteristics of flow data while allowing 
the information to be explored in a single view. By extracting and 
clustering different geographically-tacked graph configurations, we 
are better able to understand the distribution of human movement 
patterns in space, while using disaggregated data. This method is 
not limited to migration patterns, but can be used for other datasets 
where origin “reach” is a metric of interest like commuting flows, 
phone call volume, or temporal vacation/leisure flows. 
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