DEVELOPMENT OF AN OPEN SOURCE TOOLBOX FOR THE ANALYSIS AND VISUALIZATION OF REMOTELY SENSED TIME SERIES

Connie Blok, Ulan Turdukulov, Raul Zurita-Milla, Bas Retsios, Martin Schouwenburg, Mekonnen Metaferia

blok@itc.nl
CONTENTS

✓ Problem
✓ How to reduce ...
✓ Use of the toolbox
✓ Conclusions
✓ Future
PROBLEM

Long time series of RS data available to study behaviour of dynamic phenomena

Problems if animated with few controls
✓ extraction of subsets
✓ comparisons
✓ change blindness \rightarrow mixture of bottom-up (driven by visual info) and top-down (attention- or task-driven)

Attention: crucial role in change perception, but limited!

http://www.earthobservations.org/geonetcast.shtml
HOW TO REDUCE ...

Our aim is to facilitate top-down processing through effective (bottom-up) visualization:

- by letting ‘figures’ stand out against a ‘ground’
 - tracking of objects \rightarrow polygons
 - classification
 - enabling selection of subsets
 - option to keep the context (‘figure’) around a selection visible, but subdued (‘ground’)

UNIVERSITY OF TWENTE.
HOW TO REDUCE ...

✓ enabling selection of subsets
HOW TO REDUCE ...

- by adding other functions
 - multiple layers
 - control of display speed

Implementation:
extension of ILWIS for visual exploration of animated time series
USE OF THE TOOLBOX

Ethiopian lowlands:
✓ serious droughts
✓ flash floods

Explore relations vegetation ↔ precipitation:
✓ Spot-5 VEGETATION: NDVI
✓ MSG: Multi-Sensor Precipitation Estimates

Algorithm detects precipitating features and binds them into objects
✓ polygons
✓ paths

1. Fix feature index \(l \) in previous time step \(i-1 \)
2. For a given feature index \(l \), determine feature index \(k_{\text{MO}} \) in current time step \(i \) with maximum spatial overlap:
 \[
 k_{\text{MO}}(l) = \arg \max \left[\text{Size}(F_i^{l-1} \cap F_k^i) \right]
 \]
3. For a given feature index \(k_{\text{MO}} \), determine feature index \(l_{\text{MO}} \) in previous time step \(i-1 \) with maximum spatial overlap:
 \[
 l_{\text{MO}}(k_{\text{MO}}) = \arg \max \left[\text{Size}(F_i^{l-1} \cap F_{k_{\text{MO}}}^i) \right]
 \]
4. Check if feature indices are the same: \(l_{\text{MO}} = l \)
USE OF THE TOOLBOX

Use strategies

overview

zoom / filter

details on demand

analyse first

show important

zoom / filter

analyse further

details on demand

Shneiderman, 1996

Keim et al., 2006

UNIVERSITY OF TWENTE.
USE OF THE TOOLBOX
USE OF THE TOOLBOX

Early evaluation of selected visualization functions

Monitoring tasks – NDVI time series of Ethiopia
✓ 8 participants (‘with’) : toolbox with the new functions
✓ 8 participants (‘without’) : toolbox without the new functions

Methods used: think aloud, observation, questionnaires, interview

Effectiveness

Efficiency (av. time / task, minutes)

Satisfaction:
comparable (high) rates, but ‘with’ had more confidence in the tasks
USE OF THE TOOLBOX

Less difference than expected due to bugs / deficiencies

Improvements made in:
- selection of attribute values
- display of variations within selected values
- dynamic link between legend and display area
- speed control and interface

Main rendering: by the graphics hardware (OpenGL)

Potential bottlenecks:
- raster: amount of available graphics RAM
- vector: number of triangles needed to render the polygons
CONCLUSIONS

Single Open Source environment:
✓ access to GEONETCast data
✓ pre-processing
✓ analytical and animation functions

α - version ready
but further work to be done ...
FUTURE

Preprocessing of time series:
✓ projection / resampling of images
✓ filling missing pixels
✓ image smoothing

Analytical / visualization functionality:
✓ tracking algorithms
✓ quantification / visualization of attributes
✓ options to compare / synchronize time series
✓ optimization of the temporal legend

Evaluation: do the tools reduce change blindness !?