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Abstract—We present a novel approach for visualizing commuter networks, i.e., directed graphs whose nodes (cities and towns)
each have a geographic location, and whose edges each have a direction and an associated number of commuters moving between
two nodes. Our approach involves using camera state transforms that map the current camera state (position and orientation) to
various rendering parameters to achieve a hybrid 2D-3D visualization. As the camera’s angle and distance change, the shapes and
transparency levels of nodes and edges morph in response, allowing for a smooth transition between a 2D view (from above) to a 3D
view (from the side) that reveals information in different ways.

Index Terms—Interactive network visualization, geographic information systems.

1 INTRODUCTION

A commutor network describes the number of workers traveling each
day between their city of residence to their city of work. Visualiza-
tions of commuter networks allow geographers to better understand
patterns of human labor, identify poles and sub-poles, determine areas
of influence, and construct models related to economics, sociology,
and territorial organization. For instance, analyzing commuter net-
works helps geographers understand how cities are organized in terms
of transportation and communication.

Each node in a commuter network represents a city and has a mean-
ingful geographic location. Hence, unlike the visualization of many
other graphs, the positions of nodes in a commuter network are fixed.
Furthermore, the geographic distribution of nodes can be highly non-
uniform, and their can be a large number of edges, leading to edge
occlusion problems. New methods are required to improve the visual-
ization of such networks.

We have developed a prototype system for visualizing such net-
works (Figure 1). The data shown has been previously visualized
in [3], but we have since developed new visualization features. The
ground plane is displayed as a texture map of a traditional 2D map, and
the commuter network is displayed on top of this ground plane. The
user may freely move a 3D camera around the visualization. Clicking
on a city triggers a smooth camera movement from the current point of
interest to the new one. For any given city, the user may also optionally
display only incoming or outgoing edges.

An edge filtering feature allows the user to hide all edges whose
number of commuters falls outside a desired range, allowing the user
to declutter their view and only see edges with large or small num-
bers of commuters. To select the range of visible edges, we developed
a range slider widget to select an interval of values. Slider positions
within the widget are mapped to the inverse of the cumulative distribu-
tion of metric values, so that the number of elements filtered is linearly
proportional to slider position. This makes the widget “auto-adaptive”
to the metric values present.

The most novel feature of our system is how the rendering of the
visualization depends on the camera’s current state. This dependency
is determined by what we call camera state transforms, enabling us to
create a hybrid visualization that combines advantages of a 2D map
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Fig. 1. Screenshot of our prototype, showing the network of daily com-
muters between cities and towns in Aquitaine, France, in 1999. This
network comprises approximately 32 000 nodes and 800 000 edges.
Directed links are represented as wedges (trapezoidal prisms) with one
trapezoidal side on the ground plane, where the height (and color) of a
wedge depends on the number of commuters.

and a 3D scene. As the camera moves away from, or toward, a point
in the scene, and as the camera is angled away from, or toward, a
horizontal orientation, the transparency levels, shapes and sizes of the
nodes and edges adjust automatically.

When the user is looking straight down at the data in a vertical cam-
era orientation (Figure 2, bottom), the data are rendered in such a way
as to produce a 2D map, with nodes rendered as circles whose radius
reflects the number of workers living in the city, and with edges ren-
dered as trapezoids whose shape indicates direction (text labels on the
edges can also be displayed to show number of commuters). As the
user tilts the camera toward an oblique or side view (Figure 2, middle
and top), the nodes are shown as cylinders that gradually become thin-
ner and taller, whose height reflects the number of workers living in the
city. At the same time, edges gradually become tall, thin boxes, whose
height reflects the number of commuters traveling between cities. Fur-
thermore, as the camera tilts from a vertically-oriented top view, to-
ward an oblique or side view, the sides of the cylindrical nodes and
prismatic edges become more opaque, while the tops of the edges si-



multaneously become more transparent. The user can seamlessly tran-
sition between the 2D map and the 3D scene simply by tilting the cam-
era. Finally, as the user moves the camera closer to a point of interest
in the scene, the heights of edges are scaled down, to reduce occlusion
and allow the user to see more detail (Figure 3).

Fig. 2. This figure illustrates the transformation from 3D view to 2D
map, as controlled by the view angle ω between the camera’s axis and
a vertical line. From top to bottom, this angle is 60◦,45◦, and 0◦, re-
spectively. As ω decreases toward zero, the form of the edges morphs
from flat boxes to trapezoidal prisms, the tops of the edges become
more opaque, the sides of the edges become more transparent, and
the cylinders representing nodes becomes more fat and short.

The advantage of the 2D “map” view seen from above is that there
is no occlusion due to 3D structures, and navigation simply involves
panning and zooming. The advantage of the 3D view is that metric
values (number of workers) are shown as heights rather than as thick-
nesses or colors (judgments about relative differences in quantities are
easier to make when the quantities are shown as lengths rather than
colors or areas [4], and there is more spatial resolution available to
show heights in the 3D view than to show thicknesses in the 2D view).
By allowing the user to seamlessly transition between 2D and 3D by
tilting the camera, we allow the user to take advantage of the benefits
of both views with a single user interface.

Our system also allows metric values to be visualized as a surface,
as in Figure 4. When viewed from above (Figure 4, right), the opacity
and color of the surface is a function of the metric value, making higher
values stand out. When viewed from an oblique angle ((Figure 4, left
and middle), the surface becomes more uniformly opaque, with the
metric value shown by the height and color of the surface. As with the
other camera state transforms in our systems, this transition is gradual
and seamless, and occurs as the user tilts the camera.

We can compare the camera state transforms in our system to pre-
vious visualizations where the rendering depends on the camera state

Fig. 3. Z-scaling of the edge heights shown in three screen shots. From
far away (Left), z-scaling increases the differences between rectangle
heights to make important edges more apparent. As the camera ap-
proaches a point of interest (Middle and Right), in this case the Bor-
deaux area, the scaling is reduced. The height and color of each edge
reflects the number of workers moving between cities.

Fig. 4. A surface representation of a metric value, at three camera an-
gles (ω = 45◦, 20◦, and 0◦, respectively).

in some way, resulting in the below taxonomy:

INPUT: camera parameters
Angle between

line-of-sight Distance Presence of objects
and surface to camera along line-of-sight
Our system Importance-driven

Transparency (transparency depending rendering [5]
OUTPUT: on camera angle)
rendering Graphical Semantic zooming

parameters representation [1]
Embedding; i.e., Our system (nodes and Our system (edges distortion viewing
location, size, or edges that morph depending that change size depending [2]

form of geometry on camera angle) on camera distance)

Our system is implemented using OpenGL and uses GPU shaders
to accelerate the computations involved in applying camera state trans-
forms, to maintain interactive frameworks.
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