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Abstract—In this contribution, we outline and discuss a service-oriented architecture for systems that visualize geovirtual 
3D models (e.g., virtual 3D city models and landscape models) on lightweight clients. The approach is motivated by the growing 
demand for scalable, client-server based geovisualization systems and increasingly complex, massive 3D models. For this purpose, 
we have developed a 3D server responsible for 3D rendering of G-buffer cube maps, and a corresponding light-weight 3D client 
that visualizes these G-buffer cube maps, controls their streaming, and handles 3D interaction. The approach provides a solution to 
the bandwidth-limited streaming of complex, massive geovirtual 3D models because it decouples streaming data complexity from 
model complexity. We briefly discuss a collection of service building blocks for stylizing and rendering effects, which can be 
composed within a data flow graph to implement application-specific 3D geovisualization techniques. The approach facilitates 
development, deployment, and scaling of 3D geovisualization systems within service-oriented infrastructures.  

Index Terms—Geovisualization, virtual worlds, virtual environments, virtual 3D city models, service-oriented architecture. 

 

1 INTRODUCTION 

Geovisualization forms part of a growing number of mobile and 
web-based applications. For their service-oriented implementation 
and deployment, scalable and high-performance 3D rendering 
services are needed, in particular, if these services operate within a 
cloud computing environment. For 2D map visualization, web map 
services [4] have been successfully evolved, whereas web view 
services [7,8] for 3D geovirtual worlds have not reached the same 
level of maturity. 3D web view services, however, are crucial 
elements for the incorporation of 3D geovisualization into complex 
web-based workflows and services.  

While common geovisualization software architectures assume a 
client that is responsible for real-time 3D rendering (“thick client”) 
and receiving streamed model data, this approach is faced with a 
number of limitations in the case of massive geovirtual 3D worlds 
such as virtual 3D city models and landscape models due to limited 
bandwidth and limited client 3D rendering capabilities. 
Consequently, service-based and service-oriented system 
architectures that cope with these limitations are essential.  

In our approach, we model the 3D geovisualization pipeline [6] 
by a service-oriented architecture. Its key elements include:  
• Server-side, off-screen 3D rendering service; 
• Generation of multi-layered, six-sided panorama images, so 

called G-buffer cube maps, based on the G-buffers [10]; 
• Post-processing services operating on G-buffer cube maps that 

provide advanced rendering and stylization techniques;  
• Streaming of G-buffer cube maps to thin 3D clients, which 

reconstruct approximated 3D views.  
The G-buffer cube maps allow us (1) to achieve high 

performance 3D viewing on the thin client due to decoupling 
streaming data complexity from model data complexity and (2) to 
model advanced rendering techniques by a data flow graph whose 
nodes are G-buffer cube maps or general image operators. This way, 
a large number of rendering and stylization effects, e.g. cartographic 
stylization or illustrative rendering, can be transparently modeled and 
efficiently implemented in a service-oriented way. 

2 G-BUFFER CUBE MAPS 

The server-side, off-screen 3D rendering generates G-buffer cube 
maps (Fig. 1). A G-buffer cube map is a virtual six-sided texture set 
that captures the view from the cube's center in all six directions. G-

buffer cube maps represent an omnidirectional panoramic view of 
the scene not only in a discretized but also in a homogeneous way, 
abstracting from the original geometry (e.g., polygon, freeform 
surface, point cloud, etc.) of a visible object. The G-buffer can 
contain several layers, including:  
• RGB layer: A color texture that captures the visual appearance 

of the geovirtual 3D model.  
• Depth layer: A one-channel float texture that captures the 

corresponding depth buffer for a given view.  
• Normal layer: A vector-based texture that captures the surface 

normals.  
• World coordinates layer: For each pixel, it contains the world 

coordinates of the visualized object fragment.  
• Object-ID layer: A one-channel integer texture that captures an 

object identifier.  
• Object-Type layer: A one-channel integer texture that captures 

the object class identifier.  
 

 
Fig. 1. Concept of G-buffer cube maps. 

The G-buffer cube maps play a central role to decouple model 
complexity from streaming data complexity: The G-buffer cube 
maps have a constant size, which depends on the resolution 
requested by the 3D client, but does not depend on the number and 
size of geometry primitives of the geovirtual 3D models and on the 
number and size of textures used to define their visual appearance. 
The order of magnitude for, e.g., a typical virtual 3D city model 
commonly ranges between 107 and 109 geometries (or primitives), 
e.g., including a high-resolution DTM (e.g., 0.1m) and textured 
LOD1/LOD2/LOD3 building and site models. The complexity of the 
computer graphics model (e.g., scene graph and LOD data 
structures) typically increases that complexity by one order of 
magnitude leading to 108 to 1010 due to LOD and spatial data 
structures. On the contrary, the complexity of the G-buffer cube map 
is determined by the six sides of the cube map, number and bit depth 
of layers per side (typically 2-5) and the image resolution per side 
(e.g., 1,024x1,024 pixel) leading to a complexity of 107 - 108 pixel. 
Our approach uses a thin-client approach (Fig. 2) keeping the model 
on the server side, which is essential, for example, in the case of 
massive LOD-3 city models like the Roman Cologne model (Fig. 3) 
with more than 500M triangles. Dedicated hardware can be used for 
the server that permits in-memory city model representation and uses 
n-core CPUs.  
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Fig. 2. Thick, medium, and thin 3D client architectures with orders of 
magnitude of geometries (g) and image data (p).  

 
Fig. 3. The Roman Cologne model, a geographically small but 
geometrically/graphical massive virtual 3D city model.  

 

3 USING G-BUFFER CUBE MAPS 

The G-buffer cube maps can be used similar to panoramic images to 
reconstruct an approximated view of a geovirtual 3D model. The 
client renders the six-sided textured cube from a current camera 
configuration (Fig. 4).  

 
Fig. 4. Scene reconstruction based on G-buffer cube maps. 

If the camera changes, the client re-calculates the specification of 
the next G-buffer cube map and sends the request to the server. The 
client can support fundamental navigation operations such as 
zooming, panning, and 3D camera movements. Until it receives an 
up-to-date G-buffer cube map, it can operate on the current version, 
potentially introducing artifacts commonly visible as blurred image 
areas due to insufficient resolution.  

The client can also implement object-sensitive operations such as 
object selection or interactive spatial measurements if it takes into 
account the various information layers (e.g., object-id layer or 
3D world coordinate layer).  

The implementation of a typically 3D client application requires 
moderate 3D graphics capabilities such as provided by OpenGL ES. 
However, it does not require advanced shader programming because 
it is not responsible for generating the source image data, i.e., it can 
rely on G-buffer contents as provided by the 3D server. The 
separation between image synthesis on server side (a controlled 
hardware/software environment) and image use on client side (a 
potentially diversified, changing environment) simplifies software 
development drastically. In addition, clients can avoid energy-critical 
operations such as shader-intensive multi-pass rendering.  

4 SERVICE-BASED ADVANCED RENDERING TECHNIQUES 

The service-based approach based on G-buffer cube maps can be 
extended on the server-side by a data flow graph (e.g., [1,3]), whose 
nodes represent G-buffer or general image operations [5] related to, 
e.g., color, depth, normal, and object-id information and whose 
directed edges represent the data flow. This way, advanced rendering 
and stylization effects can be efficiently implemented and 
transparently composed. 

We have identified a first collection of general-purpose, reusable 
subservices that enable the composition of web view services for 
geovirtual 3D models operating on G-buffer cube maps. The 
collection includes:  

• 3D image synthesis that generates the base G-buffer; 
• Shadow mapping synthesis that generates shadow maps [2]; 
• Ambient occlusion synthesis that generates approximated 

ambient light intensities [2]; 
• Nonphotorealistic image processing that emphasizes 

edges [9]; 
• Depth-of-field effect to infiltrate an artificial object-based 

focus area in the view [2];  
• Projective texture effect to superimposed projective textures 

on the given view; 
• Highlighting effect that emphasizes the silhouette of selected 

objects;  
• Generic G-buffer and image converter, blending, and 

convolution operators. 
An example of a complex geovisualization pipeline based on these 
subservices is given in Fig. 5, which shows the related data flow 
graph. This service generates perspective stylized 3D views on 
virtual 3D city models, including advanced rendering effects such as 
global illumination, shadows, and non-photorealistic rendering. The 
RGB layer as the most important appearance capturing input and the 
RGB layer of the final result are depicted in Fig. 6. 

5 CONCLUSIONS 

The server-side, service-oriented rendering of geovirtual 3D models 
based on G-buffer cube maps enables lightweight client applications 
to allow users to access high quality, image-based visual 
representations of these models regardless of their complexity 
because geodata remains on the server. Since the resolution of the G-
buffer cube maps is fixed, only a set of multi-layer images needs to 
be transferred. The lightweight client requires only a small amount of 
3D rendering features needed to model and interactively render the 
panorama-like visual representation; it can additionally implement 
various object-based interaction techniques since object-based 
information and general geometry information is encoded in the G-
buffer cube maps. 

The approach furthermore provides a framework for developing 
G-buffer based advanced rendering and stylization effects, decoupled 
from model complexity due to the discretized G-buffer. These effects 
can be independently developed, maintained, deployed, and scaled; 
they also represent a collection of building blocks to compose 
complex geovisualization systems based on a data flow graph.  
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Fig. 5. Data flow graph for a stylized web 3D view services for virtual 3D city models. 

(a)                                                                                                                  (b) 
 
Fig. 6. Exemplary input and output of the data flow graph depicted in Fig. 5: (a) The RGB layer as the most important appearance capturing 
input and (b) the RGB layer of the final result. 


