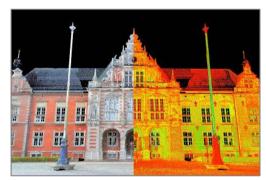


Automatische Verfahren zur Verknüpfung von Punktwolken

Dr.-Ing. Christian Hesse

- Einleitung
- Ansätze zur automatischen Registrierung
- Registrierung mit Hilfe von Ebenen
- Registrierung durch automatische Target-Erkennung
- Fazit

Vermessungsbüro Dr. Hesse und Partner Ingenieure


- Gegründet 2008
- Sitz: Hamburg
- Geschäftsbereiche:

Bauvermessung

Industrievermessung

Laserscanning

- Einleitung
- Ansätze zur automatischen Registrierung
- Registrierung mit Hilfe von Ebenen
- Registrierung durch automatische Target-Erkennung
- Fazit

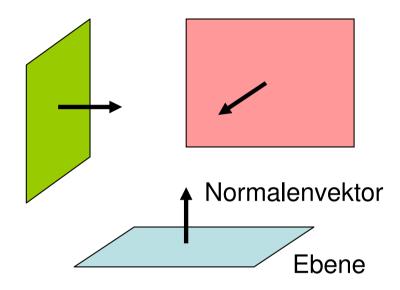
Ansätze zur automatischen Verknüpfung

Hardware: Direkte Referenzierung / Targeterkennung

- JRC Reconstructor (GPS + Magnetfeldsonde)
- Riegl (retroreflektierende Targets)
- Zoller + Fröhlich (retrorefl./punktcodierte Targets)

Software: Nutzung geometrischer Formen / Flächen / Vermaschung

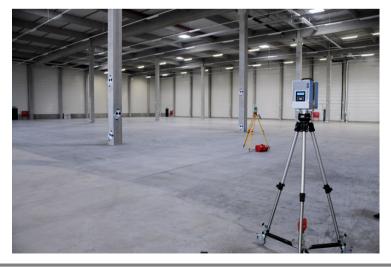
- Iterative Closest Point: Cyclone, LFM, Polyworks, Geomagic, ...
 Startwerte werden benötigt
- Vervollständigung mit bekannten Targets (semiautomatisch) nicht automatisierbar
- Verknüpfung über Ebenen: SiRailScan (Technet GmbH)


- Einleitung
- Ansätze zur automatischen Registrierung
- Registrierung mit Hilfe von Ebenen
- Registrierung durch automatische Target-Erkennung
- Fazit

Registrierung über Ebenen (SiRailScan)

Prinzipieller Ansatz:

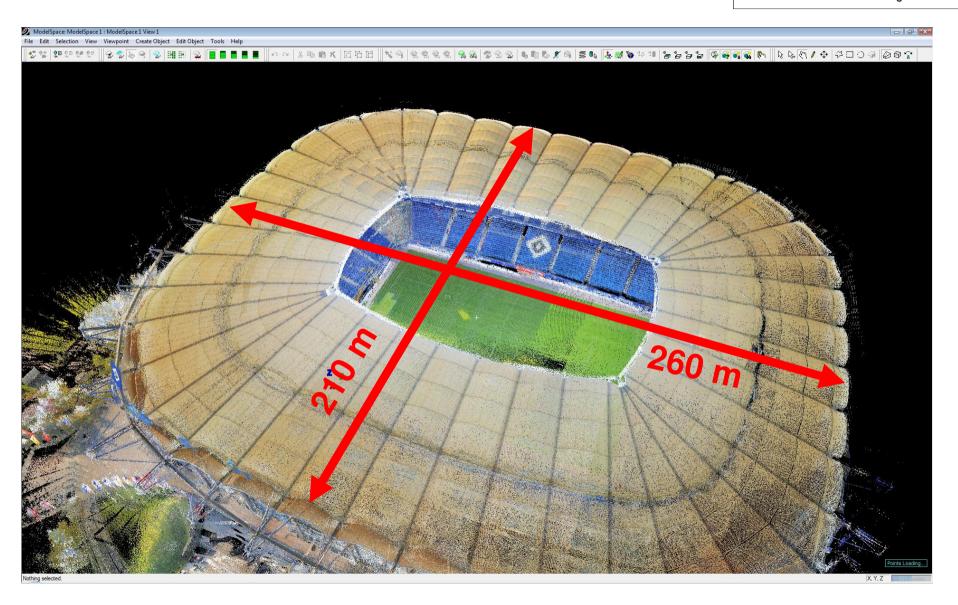
- Verringerung der Auflösung
- Unterteilung der Bildmatrix in Untermatrizen bis Ebene erkannt
- Berechnung von Schwerpunkt und Normalenvektor
- Suche identischer Ebenen
 - Datumsunabhängig
 - Datumsabhängig (wenig Überlappung / Unterbestimmung)
- Verkettete Transformation durch Ausgleichung im Gauß-Helmert-Modell



Beispielobjekte:

HSV Arena:

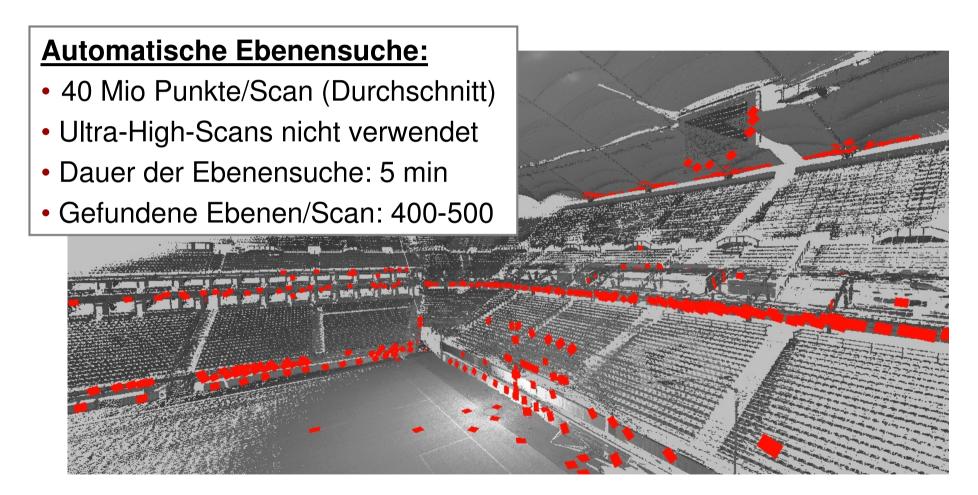
- ca. 60 Scans durchgeführt
- Rasen und Dach nicht zugänglich
- Entfernungen 50 70 m
- Anbringung von Targets schwierig



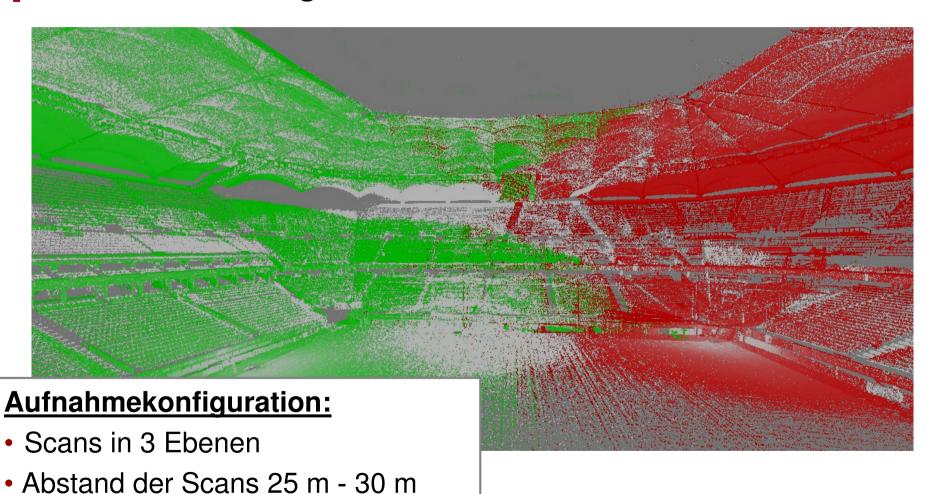
Logistikhalle:

- Abmessungen 100 m x 100 m
- 24 gleichmäßig verteilte Stützen
- Sehr hohe Präzision gefordert

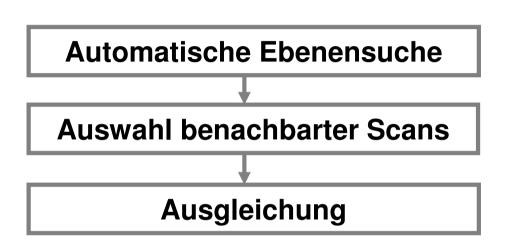
Dr. Hesse und Partner Ingenieure

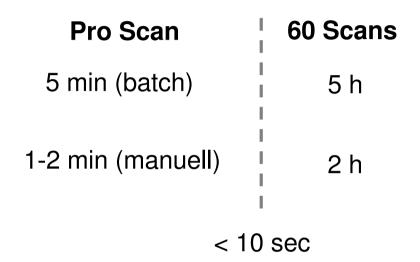


HSV Arena: Unregistrierter Scan



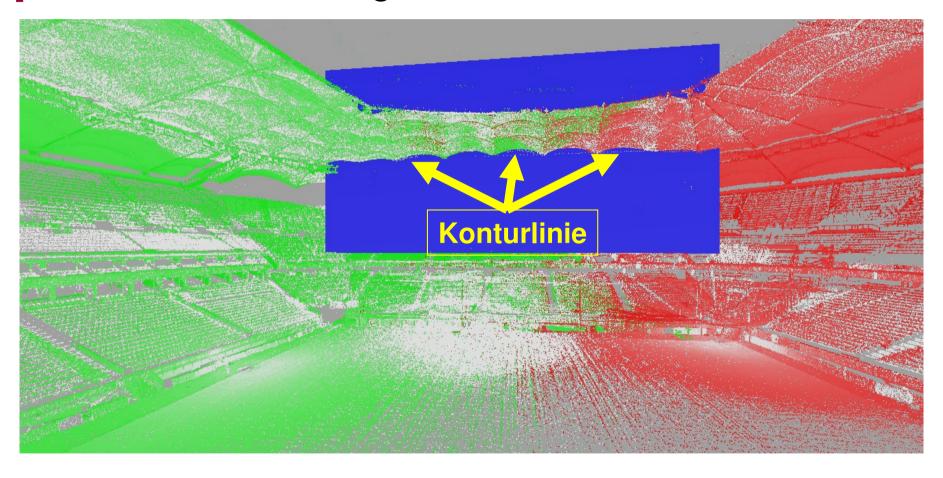
HSV Arena: Ergebnis der Ebenensuche


HSV Arena: Registrierte Scans



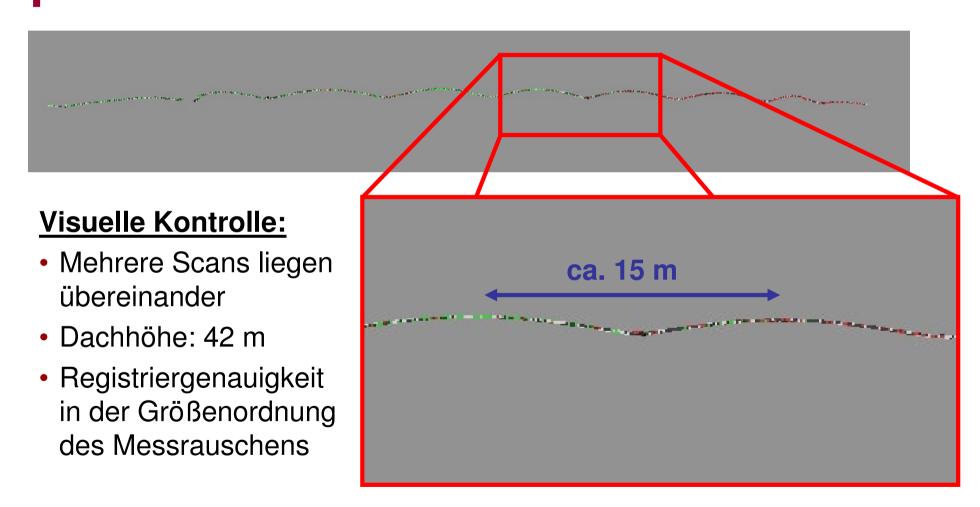
16.06.2009

Workflow der Registrierung

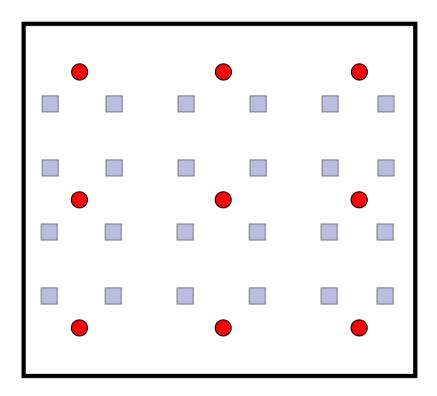


<u>Ausgleichungsergebnis:</u>

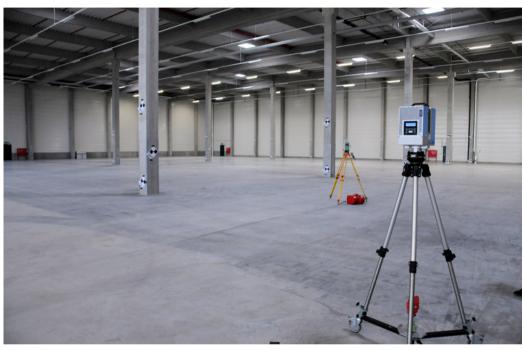
- 221 Ebenen im Uberlappungsbereich (davon 20 % verworfen)
- Std.-abw. des Transl.-vektors zwischen zwei Scans: 2,8 mm bis 4,0 mm
- Z-Richtung ist Faktor 3,0 bis 3,5 ungenauer als X- und Y-Richtung
- Redundanz der Rotationen doppelt so hoch wie die der Translationen



Schnitt durch die registrierte Punktwolke



Detailansicht der Konturlinie



Beispiel Logistikhalle

Messkonfiguration:

 Standpunkte rasterförmig auf Dehnungsfugen platziert

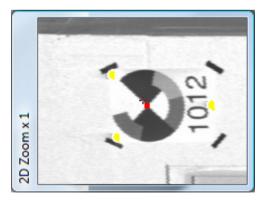
Schwierigkeit:

- Zwar roßer Überlappungsbereich...
- ...aber Punktwolken nahezu identisch
- Datumsunabhängige Verknüpfung funktionierte nur mit Vortransformation

Zwischenfazit Registrierung über Ebenen

- Nahezu vollständige Automatisierbarkeit der Registrierung ist gegeben
- Ergebnisse unabhängig von Scanauflösung
- Aufwendige Ebenensuche per Batch-Betrieb
- Genauigkeit der Registrierung auch bei großen Objekten im Bereich weniger Millimeter möglich
- Nicht einsetzbar bei extremen Objektgeometrien (z.B. in Tunneln) aufgrund fehlender Redundanz

- Einleitung
- Ansätze zur automatischen Registrierung
- Registrierung mit Hilfe von Ebenen
- Registrierung durch automatische Target-Erkennung
- Fazit



Automatische Erkennung von Targets

Z+F AutoTarget

Z+F AutoTarget (Version 1.0):

- Vollautomatische Erkennung UND Numerierung durch Software
- Vorgefertigte Targets (ca. 20 Euro)
- Hotspot zur Erkennung
- Ringcode zur Numerierung

5m Entfernung

18m Entfernung

Zuverlässigkeit der Erkennung

- 5 Standpunkte (5 m, 10 m, 20 m, 25 m, 30 m)
- je 4 verschiedene Auflösungen
- 4 Targets im Raum ———— (Gefunden / Numeriert)

Entfernung Auflösung	5 m	10 m	20 m	25 m	30 m
Middle	4/4	2/2	0/0	0/0	0/0
High	4/4	4/4	2/2	0/0	0/0
High (low power)	4/4	4/4	1/1	0/0	0/0
Superhigh	4/4	4/4	4/4	3/3	0/0
Ultrahigh	-	-	-	-	-

Wiederholgenauigkeit

- Auswertung von 71 Einzelscans mit 250 gefundenen AutoTargets
- Vergleich von 5 Auflösungsstufen

	Standardabweichung (mm) aus 10 Wiederholungen						
Auflösung	Middle	High	High (low pow)	Superhigh	Ultrahigh		
Entfernung (m)							
4,57	0,46	0,17	0,22	0,10	-		
6,16	1,10	0,23	0,28	0,10	-		
9,46	-	0,70	0,27	0,15	-		
13,64	-	0,81	0,67	0,30	-		
18,26	-	1,77	1,91	0,28	-		
19,86	-	_	-	0,60	-		
24,89	-		-	0,45	-		
30,36	-	-	-	-	-		

Standardabweichung vs. Punktabstand

Zusätzliche Betrachtung des Punktabstandes

	Standardabweichungen (mm) / Punktabstand (mm)					
Auflösung Entfernung (m)	Middle	High	High (low pow)	Superhigh	Ultrahigh	
4,57	0,46 / 5,4	0,17 / 2,7	0,22 / 2,7	0,10 / 1,4	- / 0,7	
5,03	0,91 /6,1	0,20 / 3,0	0,16 / 3,0	0,06 / 1,5	- / 0,7	
5,37	1,18 / 6,5	0,29 / 3,2	0,16 / 3,2	0,05 / 1,6	- / 0,8	
6,16	1,10 / 7,5	0,23 / 3,7	0,28 / 3,7	0,10 / 1,8	- / 0,9	
9,46	- / 11,5	0,70 / 5,7	0,27 / 5,7	0,15 / 2,8	- / 1,4	
10,77	- / 13,1	1,27 / 6,5	0,49 / 6,5	0,35 / 3,2	- / 1,6	
13,64	- / 16,5	0,81 / 8,2	0,67 / 8,2	0,30 / 4,1	- / 2,1	
18,26	- / 22,2	1,77 / 11,0	1,91 / 11,0	0,28 / 5,5	- / 2,7	
19,86	- / 24,1	- / 11,9	- / 11,9	0,60 / 6,0	-/3	
24,89	- / 30,1	- /14,9	- / 14,9	0,45 / 7,5	- / 3,7	
30,36	- / 36,5	- / 18,2	- / 18,2	- / 9,1	- / 4,5	

Genauigkeit der Scannerposition

10 unabhängige Scans auf 4 verteilte AutoTargets

	Standardabweichung (mm)					
Entfernung Auflösung	5 m	10 m	20 m	25 m	30 m	
Middle	1,54	-	-	-	-	
High	0,45	0,46	-	-	-	
High (low power)	0,9	0,29	-	-	-	
Superhigh	0,14	0,25	0,38	0,53	-	
Ultrahigh	-	-	-	-	-	

Abweichungen zur tachymetrisch bestimmten Scannerpositionen liegen zwischen 1 mm und 3 mm.

- Einleitung
- Ansätze zur automatischen Registrierung
- Registrierung mit Hilfe von Ebenen
- Registrierung durch automatische Target-Erkennung
- Fazit

Fazit

Z+F AutoTargets:

- Qualität der Z+F AutoTargets abhängig vom Punktabstand
- Zuverlässige Ergebnisse bis 25 m, Ultra-High-Modus nicht möglich
- Innere Genauigkeit im Submillimeter-Bereich
- Äußere Genauigkeit im Millimeter-Bereich
- Nachteil: Höherer Preis Nicht mehr auf Laserdrucker druckbar

Automatische Verknüpfung von Scans:

- Automatische Verknüpfung (Hard-/Software) ist gelöst
- Einschränkungen: Entfernung bzw. Vororientierung
- Gute bis sehr gute Ergebnisse je nach Objekt