

Universität für Baukunst und Raumentwicklung

HAMBURGS NEUE UNIVERSITÄT Europas erste Hochschule für die gebaute Umwelt

Th. Kersten, K. Mechelke, M. Lindstaedt, T. Graeger & H. Sternberg

Phasen im Vergleich - Erste Untersuchungsergebnisse der Phasenvergleichsscanner Faro Photon und Trimble FX

HafenCity Universität Hamburg

Inhalt der Präsentation

- n Einführung
- **n** Untersuchte terrestrische Laserscanner
- n Geometrische Genauigkeitsuntersuchungen
- n Schlussfolgerungen und Ausblick

Einführung

- n Trend TLS & schneller, weiter, genauer
- **n** Viele Hersteller **Ł** 4. Generation TLS auf dem Markt
- n Kein Scanner für alle Anwendungen Ł Zweit-Scanner

HafenCity Universität

Hamburg

- n Leistungspotenzial TLS & unklar für viele Anwender
- **n** Techn. Spezifik. = Telekom-Werbung¹⁾ mit Fußnoten
- n Keine Standards für Untersuchungs- & Prüfverfahren

HCU Hamburg

HafenCity Universität

Untersuchte terrestrische Laserscanner

Trimble FX

Faro Photon 80 Photon 120

Zoller+Fröhlich IMAGER 5006

HafenCity Universität Hamburg

Untersuchte terrestrische Laserscanner

Scanner / Eigenschaft	Trimble FX	Faro Photon 80 / 120	Z+F IMAGER 5006
Sichtfeld [°]	360 x 270	360 x 320	360 x 310
Techn. Reichweite [m]	38	76 / 153	79
Wellenlänge [nm]	690	785	658
Scan-Geschwindigkeit [pkt/s]	-Geschwindigkeit [pkt/s] ≤ 190 000		≤ 500 000
Winkelauflösung H/V [°]	0,002	0,009	0,0018
Laserspotgröße]	8.6mm @ 25m	6mm @ 50m	14mm @ 50m
Distanzgenauigkeit	keine Angabe	2mm @ 25m	6mm @ 50m
3D Punktgenauigkeit	keine Angabe	keine Angabe	10mm @ 50m
Kamera	nein	extern / optional	extern / optional
Neigungssensor	nein	ja	ја

Geometrische Genauigkeitsuntersuchungen

- n Kenngrößen nach Heister 2006 und Kern 2008
- <u>Mittlere Antastabweichung</u> (Heister 2006) als Spanne des Abstandes zum ausgeglichenen Formelement

HafenCity Universität

Hamburg

- Antastabweichung (Kern 2008) als Beschreibung des zu erwartenden Rauschens auf der Objektoberfläche
- <u>Antast-Messunsicherheit</u> (Heister 2006) als Mittelwert der Standardabw. für unbekannten Radius der ausgeglichenen Kugel
- <u>Kugelradiusabweichung</u> (Kern 2008) als Mittelwert der Differenzen zwischen geschätztem und Sollradius von k Kugeln
- <u>Mittlere Kugelabstandsabweichung</u> (Heister 2006) als Maßtreue, Überprüfung der Rückführbarkeit auf Längennormal
- <u>Abstands-Messunsicherheit</u> (Heister 2006) als Bestimmungsgüte (Kugelfitting mit festem Radius)

Geometrische Genauigkeitsuntersuchungen

HafenCity Universität

Hamburg

- n 3D-Testfeld (div. Kenngrößen)
- n Distanzmessgenauigkeit
- n Einfluss des Einfallswinkels des Laserstrahls auf die 3D-Punktgenauigkeit

3D-Testfeld

n Untersuchung 3D-Genauigkeit in Anlehnung an VDI/VDE 2634 BI. 3

HafenCity Universität

Hamburg

- n Kenngröße: hier Kugelabstandsabweichung
- n Testfeld in Halle D: Messvolumen $30x20x12m^3$, d = 3,3m bis 32,0m
- n Testfeld mit bis zu 43 Referenzpunkten, 3D-Genauigkeit <1mm

3D-Testfeld

n Scanning der Kugeln (199mm) mit Scannern von 5 Standpunkten

HafenCity Universität

Hamburg

- n Registrierung der 5 Scannerstandpunkte mit RealWorks Survey (Transformation in ein gemeinsames lokales Koordinatensystem)
- n Berechnung der Strecken zwischen den Referenzpunkten in allen Kombinationen im Scanner- und im Referenzsystem (korreliert)
- n 3D-Streckenvergleich (Soll/Ist) gemäß VDI/VDE 2634 III -Differenzen = Winkel- und Streckenmessfehler, Kugel-Fitting, Zentrierfehler

HCU | Hafeno

HafenCity Universität Hamburg

3D-Testfeld

	Kampagne	# 3D-Punkte	# Strecken	∆L _{min} [mm]	∆L _{max} [mm]	Spanne [mm] $\Delta L = \Delta I_{max} - \Delta I_{min}$
Trimble FX 6dpi	09/2008	30	465	- 7,8	23,0	30,8
Trimble FX 17dpi	09/2008	29	434	-9,6	24,0	33,6
Faro Photon 80 RR4	09/2008	30	465	-5,2	9,8	15,0
Z+F IMAGER 5006	09/2008	30	465	-5,8	10,3	16,1

3D-Testfeld

N Vergleich zu Ergebnissen 2007 (Oldenburger 3D-Tage 2008)

HCU

HafenCity Universität

Hamburg

d=145mm	Kampagne	# 3D-Punkte	# Strecken	∆L _{min} [mm]	∆L _{max} [mm]	Spanne [mm]
Leica ScanStation 1	04/2007	43	703	-2,3	9,2	11,5
Z+F IMAGER 5006	04/2007	43	703	-7,4	6,6	14,0

d=199mm	Kampagne	# 3D-Punkte	# Strecken	∆L _{min} [mm]	∆L _{max} [mm]	Spanne [mm]
Leica ScanStation 1	10/2007	29	351	-5,4	6,5	11,9
Leica ScanStation 2	10/2007	29	351	-5,4	6,5	11,9
Leica HDS 6000	10/2007	30	406	-6,7	6,3	13,0
Z+F IMAGER 5006	10/2007	30	406	-5,7	7,7	13,4

HEU HafenCity Universität Hamburg

3D-Testfeld

n Prüfstreckenverteilung im Testfeld in Anlehnung an VDI/VDE 2634

3D-Testfeld

- **n** Kugelfitting in RealWorks Survey mit festem Radius
- n Kugelkoordinaten nach Registrierung im ersten Scannerkoordinatensystem & Mittelbildung aller Kugelzentren eines Punktes
- n <u>Mittlere Kugelabstandsabweichung</u> ⊿L (Heister 2006)

$$\Delta L_i = \frac{1}{7} \sum_{j=1}^7 \left| \Delta L_j \right|$$

HafenCity Universität

Hamburg

- $\angle \Delta L_1$: Mittel aus 5 Stationen, stationsweise berechnet, 7 Strecken
- $\angle \Delta L_2$: Alle 5 Stationen registriert, 7 Strecken
- $\angle \Delta L_3$: Alle 5 Stationen registriert, alle Strecken

	Kampagne	# Strecken	⊿L₁[mm]	⊿L₂[mm]	# Strecken	⊿L₃[mm]
Trimble FX 6dpi	10/2008	7	4,1	2,6	465	4,6
Trimble FX 17dpi	10/2008	7	5,1	2,8	434	4,7
Faro Photon 80	10/2008	7	1,9	2,4	465	2,3
Z+F IMAGER 5006	10/2007	7	2,0	2,3	465	2,1

3D-Testfeld

- n Kugelfitting in RealWorks Survey mit festem Radius
- n Kugelkoordinaten nach Registrierung im ersten Scannerkoordinatensystem & Mittelbildung aller Kugelzentren eines Punktes
- Abstandsmessunsicherheit *u*_L (Heister 2006)

$$u_L = \sqrt{\frac{\sum_{j=1}^7 \Delta L_j^2}{7}}$$

HCU

HafenCity Universität

Hamburg

- u_{L1} : Mittel aus 5 Stationen, stationsweise berechnet, 7 Strecken
- *u_{L2}*: Alle 5 Stationen registriert, 7 Strecken
- Ł u_{L3}: Alle 5 Stationen registriert, alle Strecken

	Kampagne	# Strecken	<i>u_{L1}</i> [mm]	<i>u_{L2}</i> [mm]	# Strecken	<i>u_{L3}</i> [mm]
Trimble FX 6dpi	10/2008	7	5,9	3,5	464	6,4
Trimble FX 17dpi	10/2008	7	6,6	3,6	434	6,4
Faro Photon 80	10/2008	7	2,6	2,9	465	3,0
Z+F IMAGER 5006	10/2007	7	2,7	3,1	465	2,8

HCU

HafenCity Universität Hamburg

3D-Testfeld

	Kampagne	# Kugeln	# Punkte Ø	∆r _{min} [mm]	∆r _{max} [mm]	Ø ∆r [mm]
Trimble FX 6dpi	09/2008	10	2411	-2,6	1,9	-0,5
Trimble FX 17dpi	09/2008	10	19311	-3,2	3,1	-0,5
Faro Photon 80	09/2008	10	1212	-0,8	5,7	1,9
Z+F IMAGER 5006	09/2008	10	17253	-1,5	2,5	0,3

2

3

4

d=199mm

 R_{K}

6

5

4 -

3

-4

6

7

8

9

10

5

Nr.

<u>3D-Testfeld</u>

HafenCity Universität
Hamburg

Kenngröße	Berechnung	Trimble FX 6dpi [mm]	Trimble FX 17dpi [mm]	FARO Photon 80 [mm]	Z+F IMAGER 5006 [mm]
Mittlere Antastabweichung (Heister 2006)	$R = \frac{1}{n} \sum_{i=1}^{n} r_i$	0,7	0,8	0,5	0,5
Antastabweichung (Kern 2008)	$R = \sqrt{\frac{1}{n} \sum_{i=1}^{n} r_{i}^{2}}$	0,9	1,0	0,6	0,6
Antast- Messunsicherheit (Heister 2006)	$u_{R} = \sqrt{\frac{\sum_{j=1}^{n} s_{Rj}^{2}}{n}}$	1,0	1,1	0,7	0,7
Kugelradius- abweichung (Kern 2008)	$R_{K} = \frac{1}{k} \sum_{i=1}^{k} v_{i}$	-0,5	-0,5	1,9	0,3
Kugelabstands- abweichung (Heister 2006)	$\Delta L_i = \frac{1}{n} \sum_{j=1}^n \left \Delta L_j \right $	2,6	2,8	2,4	2,3
Abstands- Messunsicherheit (Heister 2006)	$u_{L} = \sqrt{\frac{\sum_{j=1}^{n} \Delta L_{j}^{2}}{n}}$	3,5	3, 6	2,9	3,1

- n 20m-Prüfstrecke auf Komparatorbahn
- n Zielzeichen für Scanner: Kugeln im Abstand 1-20m
- n Vergleich zu Referenzstrecken (Leica TCRP1201/SMX Lasertracker)
- n Kugelfitting mit bekanntem Radius in RealWorks Survey

HafenCity Universität

Hamburg

n Differenzen zu Sollstrecken (20m – Komparator)

HCU

HafenCity Universität

Hamburg

n Prüfstrecke auf Stativen von 10 - 70m / 120m) im Abstand von 10m

HafenCity Universität

Hamburg

- n Zielzeichen für Scanner: Kugeln (199mm), Flächentargets
- **n** Vergleich zu Referenzstrecken (Leica TCRP1201, TCA2003)
- n Kugelfitting mit bekanntem Radius in RealWorks Survey

HCU

HafenCity Universität

Hamburg

Einfluss des Auftreffwinkels auf die 3D-Genauigkeit

- Aufnahme: Scanning einer drehbar gelagerten plangeschliffenen Granitplatte in 10 Winkelpositionen
- Auflösung: 3mm am Objekt
- Referenz: 4 an der Platte montierte Kugeln
- **Forderung:** ausgleichende **Ebenen durch Kugelzentren** und Punktwolke sollen konstanten Abstand haben mit Referenz zur Winkelposition 0^o (relative Änderung) 21 / 28

Hamburg

HafenCity Universität Hamburg

Einfluss des Auftreffwinkels auf die 3D-Genauigkeit

НСО На

HafenCity Universität Hamburg

Einfluss des Auftreffwinkels auf die 3D-Genauigkeit

HCU | Haf

HafenCity Universität Hamburg

Einfluss des Auftreffwinkels auf die 3D-Genauigkeit

Einfluss des Auftreffwinkels auf die 3D-Genauigkeit

HafenCity Universität

Hamburg

Schlussfolgerungen / Ausblick

- n Phasenscanner im Vergleich & Unterschiede!
- n Kenngrößen (Zahlen) versus Erfahrung (Praxis)
- n ,Realitätsnahe' praktische Bedingungen (Messvolumen)

HafenCity Universität

Hamburg

- n Wichtig: Untersuchung des Gesamtsystems (HW/SW)
- n Standards: Prüfverfahren, Kenngröße, Kalibrierung
- n Untersuchung versus Feldprüfverfahren
- n Systemverbesserung durch Scanneruntersuchung

HafenCity Universität Hamburg

HCU

Universität für Baukunst und Raumentwicklung

HAMBURGS NEUE UNIVERSITÄT Europas erste Hochschule für die gebaute Umwelt

Vielen Dank für Ihre Aufmerksamkeit

www.hcu-hamburg.de/geomatik