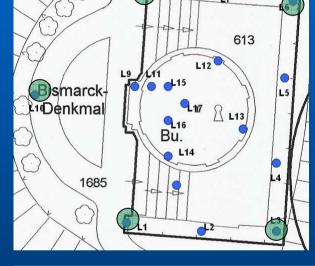
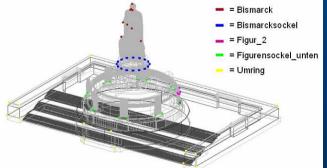
3D Erfassung und Modellierung (1988) des Hamburger Bismarck-Denkmals

Gliederung

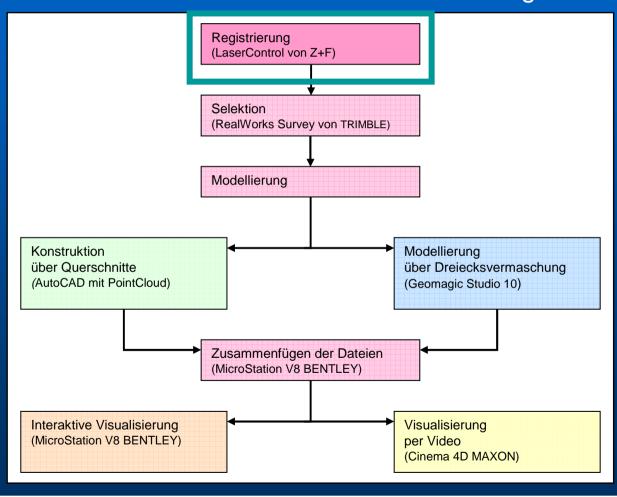
- Einleitung
- Datenerfassung
- Modellierung
- Texturierung und Visualisierung
- Datenreduktion
- Genauigkeitsanalyse
- Aussagen zur Wirtschaftlichkeit
- Fazit und Ausblick

Einleitung


- Markante Denkmäler prägen ihre Umgebung
- Für städtebauliche Planungen spielen sie oft eine Rolle
- Aus diesem Grunde ist es auch sinnvoll Monumente dieser Art wie dem Bismarck-Denkmal in einem 3D-Stadtmodell wie dem von Hamburg zu repräsentieren
- Die komplexen Objekte k\u00f6nnen durch das terrestrische Laserscanning geometrisch erfasst werden
- Bei der Modellierung sollte das Hauptmerkmal auf:
 - eine kleine Datenmenge
 - mit einem hohen Wiedererkennungswert gelegt werden
 - ebenso wie auf eine wirtschaftliche Durchführbarkeit


Datenerfassung

- Die Aufnahme des Bismarck-Denkmals erfolgte an zwei Messtagen
- 1. Messtag:
 - Terrestrisches Laserscanning
 - Netzverdichtung über GPS
 - Targetbestimmung über Tachymetrie

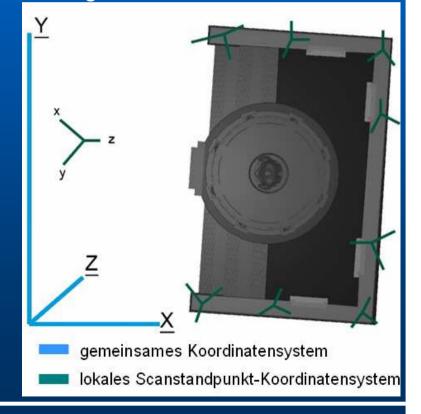

- 2. Messtag:
 - Tachymetermessung für die Genauigkeitsanalyse

Arbeitsprozesse

Übersicht der einzelnen Arbeitsschritte zur Erstellung des 3D-Modells

Registrierung

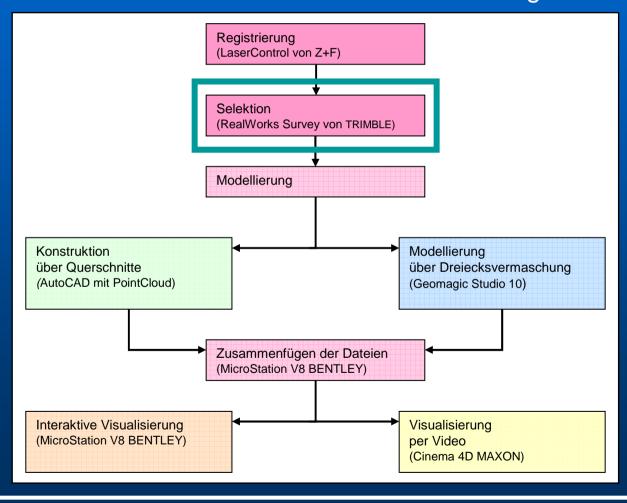
Registrierung


Durch die Verknüpfung über identische Passpunkte in den Scans werden die einzelnen Laserscanstandpunkte in ein gemeinsames

Koordinatensystem transformiert

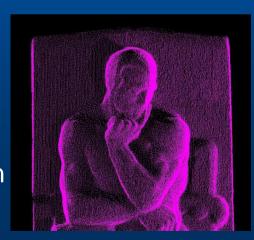
Georeferenzierung

Transformation des gemeinsamen
Koordinatensystems in das übergeordnete
Landessystem


Lage- und Höhenanschluss über Passpunkte

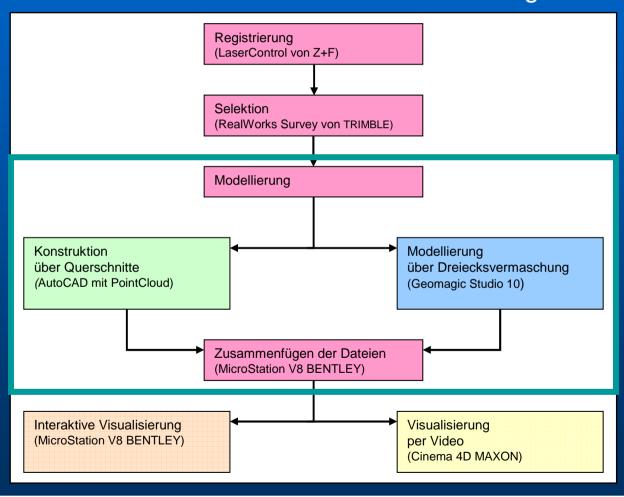
Arbeitsprozesse

Übersicht der einzelnen Arbeitsschritte zur Erstellung des 3D-Modells

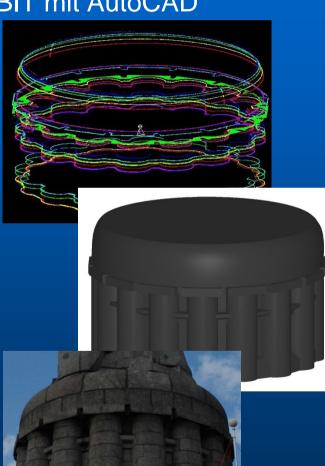


Selektion

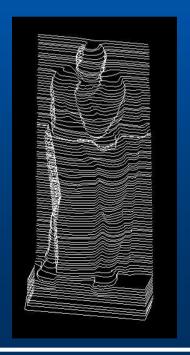
- Datenaufbereitung für die weiterverarbeitenden Programme
 - kleine Datenmenge = bessere Rechnerperformance
- Ca. 180 Millionen Punkte gescannt
- Gezielte Verringerung der Daten durch:
 - Unterteilung des Modells
 - Filterung der Scandaten
 - Bereinigung der Teilbereiche
- Die Bereinigung muss größtenteils manuell durchgeführt werden = sehr zeitaufwendig
- Automatische Verfahren zur kompletten Selektion gibt es noch nicht



Arbeitsprozesse

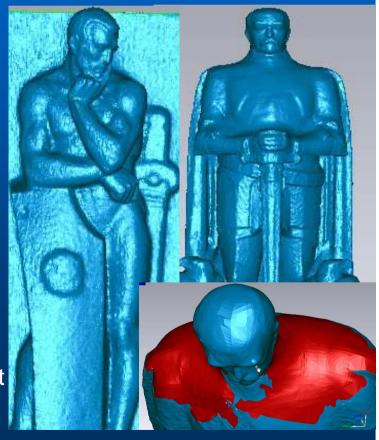

Übersicht der einzelnen Arbeitsschritte zur Erstellung des 3D-Modells

Modellierung über Querschnitte

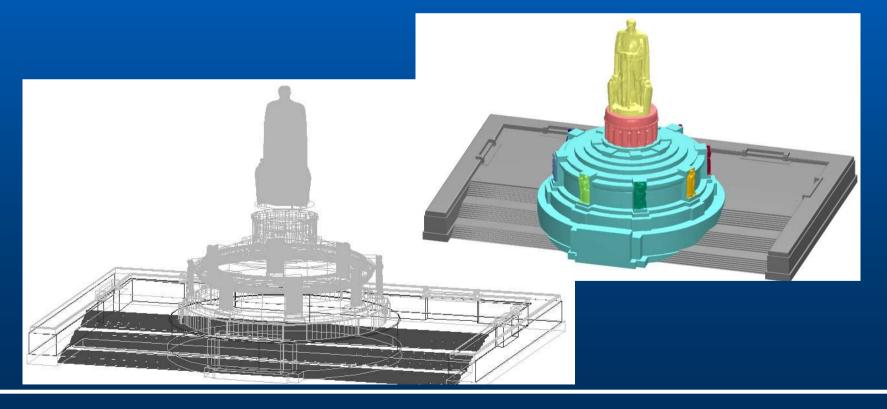

- Verwendung des Plug-In PointCloud von KUBIT mit AutoCAD
- Markante Querschnitte werden in die Punktewolke hineingelegt
- Diese werden per Hand abdigitalisiert
- Anschließend werden die Schnitte auf ihre entsprechende Höhe extrudiert
- Durch diese Arbeitsweise wird das Ergebnisdatenvolumen deutlich geschmälert
 - geringe Datenmenge
 - hoher Wiedererkennungswert

Modellierung über Querschnitte

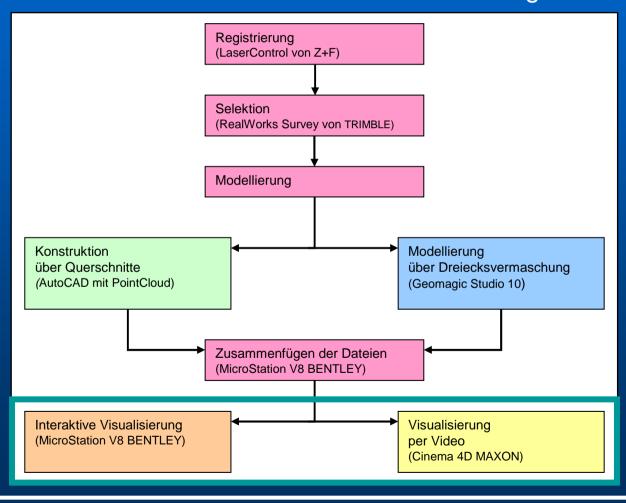
- Im Vergleich zu dem Sockel konnten die Figuren nicht erfolgreich über Querschnitte modelliert werden, da
 - vor allem die Details im Gesichtsbereich dabei verloren gehen
 - dieses Verfahren für komplexe Objekte zu zeitintensiv ist



Modellierung über Dreiecksvermaschung


- Die Dreiecksvermaschung ermöglicht eine realistische Modellierung von Freiformflächen, wie z.B. bei den Figuren
- Einsatz der Software Geomagic
 - Geomagic ist eine sehr umfangreiche Applikation
 - Manuelle und automatische Füllung von Löchern
 - Ergebnis kann nach der Vermaschung optimiert werden z.B. durch Glättung
 - Resultat mit hohem Wiedererkennungswert

Modellierung


- Zusammenfügung der modellierten Teilbereiche aus PointCloud und Geomagic in MicroStation
- Das Laden der einzelnen DXF-Dateien erfolgte problemlos

Arbeitsprozesse

Übersicht der einzelnen Arbeitsschritte zur Erstellung des 3D-Modells

Texturierung und Visualisierung

Visualisierung des Denkmals erfolgte über:

- interaktives 3D-PDF
- Texturierung über Vergabe von sinnvollen Layerfarben auf Grund der

Dateigröße

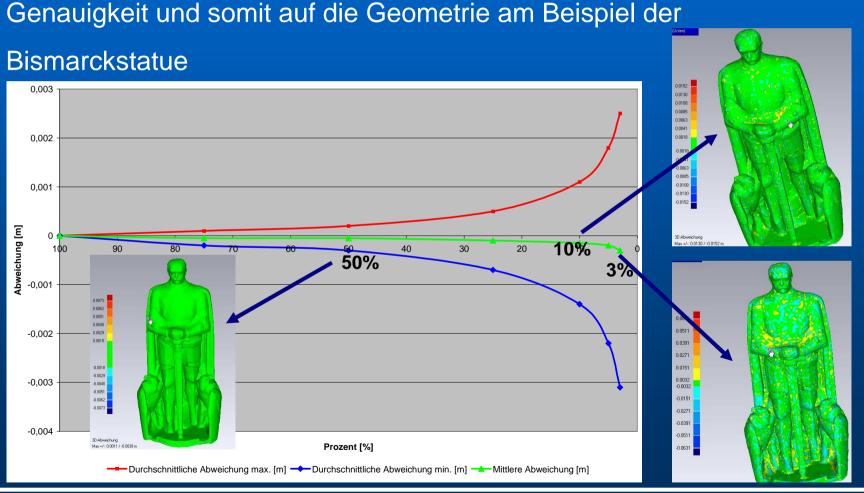
- Animationsvideo (Cinema 4D)
- Verwendung von synthetischeTexturen inkl. Bumpmapping
- Einpflegung des Denkmals in das Hamburger 3D-Stadtmodell durch das LGV Hamburg

ohne Bumpmapping

mit Bumpmapping

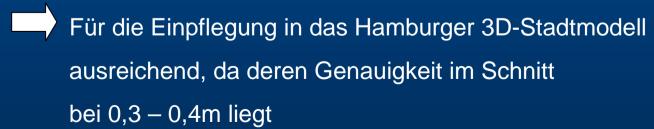
Datenreduktion

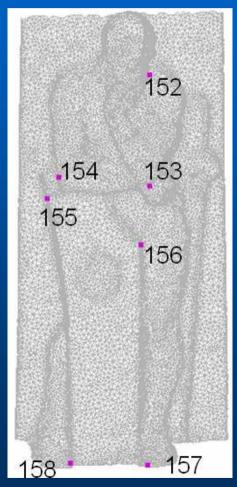
- Ein weiterer wesentlicher Bestandteil dieser Arbeit war die Untersuchung, inwiefern eine Datenreduktion möglich ist
- Einsatz von verschiedenen Filterparametern unter Berücksichtigung, dass das Modell:
 - geometrisch korrekt und
 - visuell ansprechend bleibt
- Krümmungsbasierte Reduktion in Geomagic
- Polygondezimierung in Geomagic



Datenreduktion

 Darstellung der Auswirkungen der Polygondezimierung auf die Genauigkeit und somit auf die Geometrie am Beispiel der

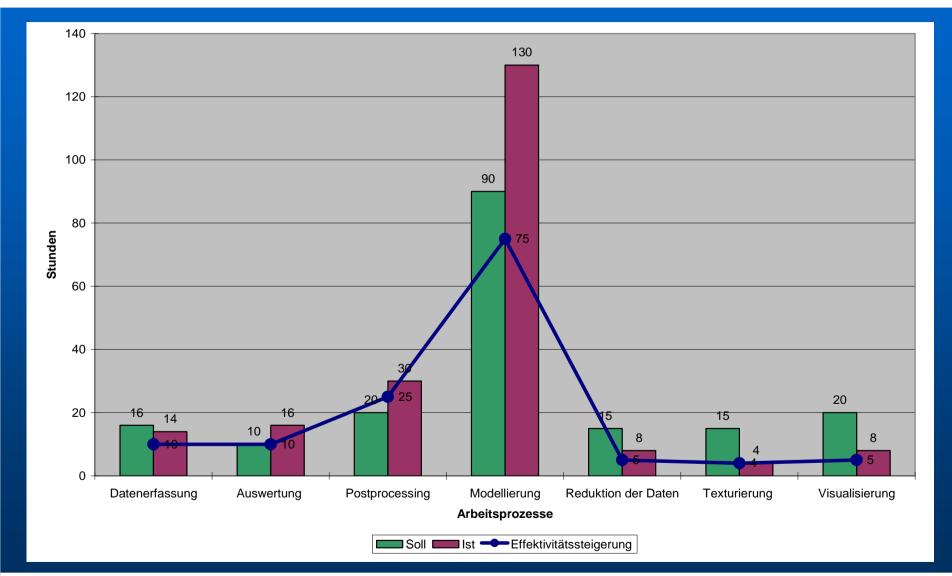

Genauigkeitsanalyse



- Überprüfung der geometrischen Korrektheit des 3D-Modells
- Bestimmung markanter Punkte über Tachymetrie
- Korrespondierende Punkte im Modell abgegriffen
- Daraus ergibt sich ein Soll- und Ist-Vergleich

		Tachymetermessung			3D-Modell			Soll (Tachy) - Ist (3D-Modell)		odell)
	Punkt	Rechts- wert	Hoch- wert	Höhe	Rechts- wert	Hoch- wert	Höhe	Rechts- wert	Hoch- wert	Höhe
	Nr.	[m]	[m]	[m]	[m]	[m]	[m]	x [m]	y [m]	z [m]
Figur_2	152	4503,749	5674,785	39,26	4503,720	5674,768	39,27	0,029	0,017	-0,012
	153	4503,783	5674,652	38,17	4503,726	5674,588	38,21	0,057	0,064	-0,036
	155	4502,769	5674,585	37,99	4502,749	5674,583	38,01	0,020	0,002	-0,018
	156	4503,674	5674,748	37,53	4503,637	5674,737	37,56	0,037	0,011	-0,027
	157	4503,780	5674,589	35,35	4503,732	5674,597	35,39	0,048	-0,008	-0,042
	158	4503,063	5674,357	35,38	4503,043	5674,365	35,43	0,020	-0,008	-0,050

Abweichungen durchschnittlich von 0,03m bis 0,1m


Aussagen zur Wirtschaftlichkeit

Arbeitsschritte	zeitlicher Umfang [Std.]	Soll - Prozentualer Anteil [%]
Datenerfassung	16	48 %
Auswertung	10	40%
Postprocessing	20	□8%
Modellierung		
Querschnitte	35	
Dreiecksvermaschung	55	
Reduktion der Daten	15	8 %
Texturierung	15	■ 11% ■ 11% ■ 11%
Visualisierung	20	□ 5% □ 9%

Aussagen zur Wirtschaftlichkeit

Fazit und Ausblick

- Es ist möglich komplexe Objekte in kurzer Zeit flächenhaft und ohne Signalisierung mit Hilfe eines terrestrischen Laserscanners zu erfassen
- Ebenso kann durch gezieltes Anwenden von Filtern eine geringe Datenmenge erreicht werden, wobei der Wiedererkennungswert erhalten bleibt
- Vor allem die Modellierung ist zur Zeit noch unwirtschaftlich

größter Zeitfaktor = stärkstes Effektivitätssteigerungspotential!

Fazit und Ausblick

- Wünschenswert wären Softwarelösungen, die für die Modellierung von Denkmälern in 3D-Stadtmodellen konzipiert sind, um:
 - Kompatibilitätsprobleme zu umgehen
 - eine korrekte Geometrie bei geringer Datenmenge zu erhalten
 - und vor allem um wirtschaftlich arbeiten zu können.

 Denn Denkmäler gibt es genug, alleine in Hamburg rund 1000, die nur darauf warten erfasst, modelliert und dreidimensional visualisiert zu werden!!!

...zum Schluß

Danke für Ihre Aufmerksamkeit!

Kontaktdaten:
Antje Tilsner, B.Sc.
tilsnerantje@aol.de